Balanced reduced order model of sys of a given order. States are eliminated based on Hankel singular value.
Parameters : | sys: StateSpace :
orders: integer or array of integer :
method: string :
|
---|---|
Returns : | rsys: StateSpace :
|
Raises : | ValueError :
ImportError :
|
Examples
>>> rsys = balred(sys, order, method='truncate')
Calculate an ERA model of order r based on the impulse-response data YY.
Note
This function is not implemented yet.
Parameters : | YY: array :
m: integer :
n: integer :
nin: integer :
nout: integer :
r: integer :
|
---|---|
Returns : | sys: StateSpace :
|
Examples
>>> rsys = era(YY, m, n, nin, nout, r)
Calculate the Hankel singular values.
Parameters : | sys : StateSpace
|
---|---|
Returns : | H : Matrix
|
See also
gram
Notes
The Hankel singular values are the singular values of the Hankel operator. In practice, we compute the square root of the eigenvalues of the matrix formed by taking the product of the observability and controllability gramians. There are other (more efficient) methods based on solving the Lyapunov equation in a particular way (more details soon).
Examples
>>> H = hsvd(sys)
Calculate the first M Markov parameters [D CB CAB ...] from input U, output Y.
Parameters : | Y: array_like :
U: array_like :
M: integer :
|
---|---|
Returns : | H: matrix :
|
Notes
Currently only works for SISO
Examples
>>> H = markov(Y, U, M)
Model reduction of sys by eliminating the states in ELIM using a given method.
Parameters : | sys: StateSpace :
ELIM: array :
method: string :
|
---|---|
Returns : | rsys: StateSpace :
|
Raises : | ValueError :
|
Examples
>>> rsys = modred(sys, ELIM, method='truncate')