Linear quadratic regulator design
The lqr() function computes the optimal state feedback controller that minimizes the quadratic cost
The function can be called with either 3, 4, or 5 arguments:
Parameters: | A, B: 2-d array
sys: Lti (StateSpace or TransferFunction)
Q, R: 2-d array
N: 2-d array, optional
|
---|---|
Returns: | K: 2-d array
S: 2-d array
E: 1-d array
|
Examples
>>> K, S, E = lqr(sys, Q, R, [N])
>>> K, S, E = lqr(A, B, Q, R, [N])
Place closed loop eigenvalues
Parameters: | A : 2-d array
B : 2-d array
p : 1-d list
|
---|---|
Returns: | K : 2-d array
|
Examples
>>> A = [[-1, -1], [0, 1]]
>>> B = [[0], [1]]
>>> K = place(A, B, [-2, -5])